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Abstract The detection of gravitational waves is a long-awaited event in modern physics
and, to achieve this challenging goal, detectors with high sensitivity are being used or are
under development. In order to extract gravitational signals emitted by coalescing binary
systems of compact objects (neutron stars and/or black holes), from noisy data obtained by
interferometric detectors, the matched filter technique is generally used. Its computational
kernel is a box-constrained global optimization problem with many local solutions and a
highly nonlinear and expensive objective function, whose derivatives are not available. To
tackle this problem, we designed a real-coded genetic algorithm that exploits characteris-
tic features of the problem itself; special attention was devoted to the choice of the initial
population and of the recombination operator. Computational experiments showed that our
algorithm is able to compute a reasonably accurate solution of the optimization problem,
requiring a much smaller number of function evaluations than the grid search, which is gen-
erally used to solve this problem. Furthermore, the genetic algorithm largely outperforms
other global optimization algorithms on significant instances of the problem.
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1 Introduction

The detection of gravitational waves (DGW) from astrophysical sources is a very challeng-
ing goal in modern physics. A direct evidence of the existence of such waves will provide
a validation of Einstein’s general relativity theory and will open a path toward a new view
of the universe [1]. Networks of detectors have been recently deployed with unprecedented
capabilities, but gravitational waves have not yet been observed because of many difficulties
arising in the detection process. Among them, the weakness of the gravitational signal and the
rarity of the events that produce such waves call for highly effective data analysis techniques
to filter the detector data streams.

Coalescing binary systems of compact objects (neutron stars and/or black holes) are very
promising sources of gravitational waves for ground-based laser interferometric detectors.
In this case, the most widely used detection technique is the matched filter, which exploits
the waveform of the signal and assumes that the instrumental noise is a stationary white or
whitened Gaussian stochastic process (see [2] and the references therein). A crucial issue in
this methodology is the solution of a box-constrained global optimization problem, which is
hard to solve because of the strong nonlinearity of the objective function, the unavailability
of its derivatives, the presence of many local maxima, and the high computational cost of its
evaluation. Furthermore, the objective function is a stochastic process because of the pres-
ence of noise, and hence, for a given gravitational signal, its maximum value changes with
a specific realization of the noise.

In the astrophysics community, this optimization problem is usually solved by applying
the grid search, which evaluates the objective function in a suitable discrete set of points
belonging to the feasible domain (the grid) [2]. This set can be built to ensure that the maxi-
mum over it satisfies certain accuracy requirements (see Sect. 2), but this implies a very large
number of grid points, and hence of objective function evaluations. To reduce this number,
hierarchical strategies based on the grid search have been proposed, where a coarse grid or
another optimization approach is initially applied to identify “promising” sub-domains, and a
fine grid is then used on the sub-domains to find a good approximation of the maximum [3–5].
However, such strategies might lead to disregard, in the first phase, a sub-domain containing
the solution, thus increasing the probability of missing the signal even if it is present.1

We investigate the application of Genetic Algorithms (GAs) to the above global optimi-
zation problem, with the aim of reducing the computational cost with respect to the grid
search. These algorithms have the advantage that a priori information on the problem can
be easily incorporated in the design of genetic operators, allowing the solution of difficult
problems (see, e.g., [6]). Specifically, we present a real-coded GA designed by taking into
account characteristic features of the problem and analyze its performance vs. the grid search
and other well-established global optimization algorithms. Computational experiments on
representative instances of the optimization problem show the effectiveness of our GA.

2 Mathematical formulation of the DGW problem

The DGW problem basically consists in discovering if the output of the detector contains
a gravitational signal or if it is just the noise background. In the presence of a signal, this
output is generally modeled as

1 The matched filter technique provides a solution to the DGW problem with a certain confidence, identified
by the so-called probabilities of false alarm and detection (see Sect. 2).
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x(t) = r(t) + h(t; θ),

where t is the time, r(t) is the noise, h(t; θ) is the gravitational signal and θ is a vector of
parameters. We assume that r(t) is strictly white noise, i.e. a wide-sense stationary Gaussian
stochastic process with mean 0 and variance 1 [7]. We focus our attention on gravitational
wave signals emitted by coalescing binary systems, which can be modeled as chirp signals
[3], i.e.

h(t; θ) = Aa(t − t0; m1, m2) cos(ϕ(t − t0; m1, m2) + ϕ0),

where

θ = (A, ϕ0, t0, m1, m2),

with A, ϕ0 and t0 denoting the amplitude, the initial phase, and the arrival time of the sig-
nal, respectively, and m1 and m2 the masses of the coalescing binary system. The functions
a(t − t0; m1, m2) and ϕ(t − t0; m1, m2) are expressed in the so-called second-order restricted
post-Newtonian approximation [3]. We note that the vector of parameters θ is unknown. In
practice, the output of the detector is sampled with a certain time step, thus a segment of
data is analyzed, which is an N -dimensional vector x = (x[0], . . . , x[N − 1]); the cor-
responding sampled gravitational signal, if present, is an M-dimensional vector h(θ) =
(h[0], . . . , h[M −1]), with M < N (the dependence on θ has been neglected for simplicity).
In the following, we assume θ = (A, ϕ0, n0, m1, m2), i.e. we substitute the arrival time t0
with the index n0 of the corresponding sample, where n0 ∈ {0, . . . , N − M}.

As noted in Sect. 1, a widely used technique for solving the DGW problem is the matched
filter, which is an optimal linear filter for detecting signals of known shape in stationary
Gaussian noise [2,8,9]. Its application requires the following steps:

1. correlating the output of the detector with a family of templates, consisting of chirp
signals h(θ), with θ varying in a suitable manifold;

2. finding the maximum of the correlations with respect to all the parameters;
3. comparing this maximum with a suitable threshold to decide if the output of the detector

contains a gravitational signal (a detection is announced if the maximum exceeds the
threshold).

This procedure is based on the observation that the highest Signal-to-Noise Ratio (SNR)2 of
the filter output is obtained when the values of the parameters identifying the template are the
same as in the signal, and that this SNR is equal to the maximum, with respect to the signal
parameters, of the mean value of the correlation, which is a stochastic process because of
the stochastic nature of the noise [2]. The choice of the threshold is related to the probability
of false alarm, i.e. of stating a detection in the absence of a signal, and to the probability of
detection, i.e. of stating a detection when the output contains a gravitational signal [11].

It can be shown that the maximization in step 2 can be performed with respect to only
three parameters, i.e. the masses m1 and m2, and the index n0; furthermore, it can be carried
out separately for (m1, m2) and n0 [2]. Thus, steps 1 and 2 of the matched filter can be
formulated as the following global optimization problem:

maximize
(m1,m2)∈�

F(m1, m2), (1)

2 We assume that the SNR is defined as
√

E2/σ 2, where E2 = (2/ f )
∑

i h[i], σ 2 is the power of the noise,
assumed to be white Gaussian, f is the sampling frequency, and h[i] are the samples of the signal. This
definition is adopted by the LAL package [10], which has been used for the generation of test problems in our
computational experiments (see Sect. 4).
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Fig. 1 3D plot of the objective function F , in case of noise plus gravitational signal from a binary system
with masses m1 = m2 = 1.4 M� (a), m1 = 1.4 M� and m2 = 10 M� (b), m1 = 5 M� and m2 = 10 M�
(c), and in case of noise only (d). The SNR is equal to 10. M� denotes the solar mass

where

� = {(m1, m2) ∈ �2 : l ≤ m1, m2 ≤ u}, (2)

F(m1, m2) =
√

max
n0∈{0,...,N−M}

(
C2

0 (n0, m1, m2) + C2
π/2(n0, m1, m2)

)
,

and C0(n0, m1, m2) and Cπ/2(n0, m1, m2) are the correlations between x and the normalized

quadrature components of the template, ĥ0(m1, m2) and ĥπ/2(m1, m2) [11]:

C0(n0) =
n0+M−1∑

k=n0

x[k]ĥ0[k − n0], Cπ/2(n0) =
n0+M−1∑

k=n0

x[k]ĥπ/2[k − n0]

(the dependence on m1 and m2 has been neglected for simplicity). We note that the maximum
SNR is the maximum of the mean value of the objective function in (1); as shown in Sect. 4,
this property can be used to assess the “accuracy” of the solution of problem (1) computed
by using a selected algorithm.

Problem (1) is the most critical issue in the application of the matched filter. Its solution
is a difficult task, because the objective function F is highly nonlinear and with many local
maxima (see Fig. 1), and its derivatives are not available. Furthermore, its evaluation is com-
putationally expensive, since it requires the solution of two ordinary differential equations
(ODEs) to generate the quadrature components of each template [12], and the execution of
three FFTs of length N to compute the correlations of x with them [3]. Common values of N
are O(105); the time for solving the ODEs depends on the masses of the gravitational signal
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Fig. 2 Grid ensuring a minimal
match of 97% over the domain
[1, 30] × [1, 30] (27,379 points)
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(the smaller the masses the larger the time), and is highly variable (from about 2% to 650% of
the time for computing the correlations, in our experience). In the astrophysics community,
the most widely used method for solving problem (1) is the grid search; it discretizes the
feasible domain � by using a suitable grid of points and evaluates the objective function
F at each point to determine an approximation of the global maximum. The search for the
maximum can be carried out in half of the feasible domain, since F is symmetric with respect
to m1 and m2. The main reason for choosing the grid search is that it provides information on
the “accuracy” of the computed maximum. Indeed, the grid can be built by ensuring that the
mean value of the maximum of F over it is not lower than a given percentage of the maximum
SNR, called minimal match [2]. A minimal match of at least 97% is required, leading to a
large number of grid points and hence of objective function evaluations; e.g., a grid of 27,379
points is needed to get a minimal match of 97% over the domain [1, 30]×[1, 30] (see Fig. 2).
We also note that the grid is highly non-uniform, with more points in the regions where the
objective function may have greater variability.

Reducing the computational cost in the solution of problem (1), while achieving a com-
parable accuracy in the mean value of the maximum, is a main goal in the application of the
matched filter, since it increases the number of data segments that can be analyzed. In the
next section we present a genetic algorithm developed to achieve this goal.

3 A genetic algorithm for the DGW problem

The genetic algorithms (GAs) are a class of evolutionary algorithms which apply the princi-
ples of natural evolution to find an optimal solution to a problem [13,14]. In a GA, an initial
population of candidate solutions, called individuals or chromosomes, is randomly taken,
so that coverage of the search space is assumed; three basic operators, selection, recombi-
nation (or crossover) and mutation, which mimic the corresponding natural processes, are
iteratively applied to evolve the individuals toward a better population. A fitness function is
used to measure the “goodness” of each individual. A solution to the problem is given by
the fittest individual after the last evolution step. The basic structure of a GA is outlined in
Fig. 3.

For numerical optimization problems on continuous domains of �n , real-coded GAs, i.e.
GAs where each individual is represented as a real n-dimensional vector having as genes the
vector components [15], appear a more natural choice than binary-coded GAs. In this case,
for problem (1), an individual is a pair of masses m = (m1, m2) and its genes are the single
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Fig. 3 Basic structure of a genetic algorithm

masses mi , i = 1, 2. The way GAs perform strongly depends on the design of the genetic
operators and their tuning to the specific problem under consideration. Next we describe
the genetic operators as they have been designed in our algorithm. Before them, we discuss
the choice of the initial population, which plays a fundamental role in the solution of our
problem.

3.1 Initial population

Maaranen et al. recently provided numerical evidence that the initial population may strongly
affect the speed of GAs and that a “good” initial population should combine genetic diver-
sity, i.e. the ability to reach the whole feasible set during the evolution process, with uniform
coverage, i.e. a spatial distribution in the feasible set which avoids clustering and uncovered
regions [16]. On the other hand, in the GDW problem, a suitable choice of the templates
for the matched filter technique leads to a nonuniform discretization of the feasible set, with
points clustered in the areas where the objective function may show greater variability. This
is an a priori specific information on the problem which can be included into the selection
of the initial population. The most straightforward way to do this is to randomly select the
individuals from a grid G corresponding to a widely accepted value of minimal match, such
as 97%.

To foster a uniform coverage, we combined the previous strategy with a nonaligned sys-
tematic sampling (NSS), in which the feasible box � is splitted into b2 elementary boxes with
equal side lenghts, and one individual is selected in each elementary box according to some
rule [16]. In our case, the individual is randomly chosen among the points of G belonging
to the box; furthermore, the algorithm has been slightly modified to handle the (possible)
case that a box does not contain any grid point. Given the size Np of the population, i.e. the
number of its individuals, the NSS is applied first, to select a part of the initial population;
then, the remaining individuals are randomly taken from G. The parameter b is generally
chosen to guarantee that no large areas of the feasible domain are left uncovered; b = 0
corresponds to an initial population randomly selected from G, whereas b2 = Np to an
initial population resulting only from the grid-based NSS. Because of the symmetry of the
problem with respect to m1 and m2, only the triangle m1 ≥ m2 of �, and the elementary
boxes covering it, are actually considered.

The random selection of any individual from G is performed by labelling each point of G
with an integer number from 1 to Np and by choosing the point q = 1+ int (rnd(0, 1) · Np),
where rnd(0, 1) is a random number from a uniform distribution in (0, 1) and int (x) is the
integer part of x . The same rule is applied in each elementary box, considering only the points
of G contained into the box.
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3.2 Selection of parents

The purpose of the selection operator is to choose, from the current population, a mating
pool of individuals that will potentially generate offspring through the recombination of their
chromosomes. The selection of these individuals, called parents, is based on the principle
of elitism: the individuals with higher fitness have higher probability to be picked. On the
other hand, population diversity must be kept in order to avoid a premature convergence
of the genetic algorithm, and therefore too much elitism in the selection might result in a
serious drawback, especially when many local solutions exist. Several selection operators
have been devised, such as proportional selection, tournament selection, rank-based selection
and truncation selection [17,18]. These operators are characterized by the so-called selective
pressure, which is related to the takeover time, i.e. the number of generations needed by the
best individual in the initial population to fill up the whole population, by the application of
the selection operator alone [17]. If the takeover time is large then the selective pressure is
small, and vice versa.

For our problem, we choose the binary tournament without replacement, that has a medium
selective pressure with respect to the other selection operators [18], and hence appears suit-
able for handling the existence of a large number of local solutions. Furthermore, the binary
tournament does not require for the individuals in the population to be ranked. This operator
randomly picks two individuals from the population and selects the one with better fitness
as potential parent to be put into the mating pool; the picked individuals are removed from
the population and the process is repeated again, until no individuals are available. This pro-
cedure is repeated twice, to have a number of parents equal to the size Np of the population.
In this way the best individual is selected at least twice and the worst one is discharged. We
also note that the same individual can be present in the mating pool twice, depending on its
fitness. The random selection of each individual is carried out with the rule described at the
end of Sect. 3.1, where the current number of individuals is used instead of Np at each step
of the tournament.

3.3 Recombination

Once the mating pool is defined, pairs of individuals are randomly taken from it and mated.
The number of actual parents depends on a parameter PR ∈ (0, 1), called probability of
recombination; for each individual in the mating pool, a random number r from a uniform
distribution in (0,1) is generated and, if r < PR , the individual is selected as parent. A pair
of parents is formed by two individuals consecutively selected.

As basic recombination operator we choose the BLX-α one, which is a well established and
studied technique for real-coded genetic algorithms [15,19]. Each pair of parents mm, m f

generates three offspring, m1, m2, m3. The recombination is carried out separately on each
gene by taking

m j
i = rnd(Ii ), Ii = [gi − αMi , Gi + αMi ], i = 1, 2, j = 1, 2, 3, (3)

with gi = min{mm
i , m f

i }, Gi = max{mm
i , m f

i }, Mi = Gi − gi , and |α| < 1. Ii is referred to
as action interval. We note that α is related to the size of the region around each parent, and
thus its value controls the degree of “resemblance” to a parent; α > 0 fosters exploration,
i.e. the tendency to expand the search space, whereas α < 0 fosters exploitation, i.e. the
tendency to deepen the knowledge in areas of the search space already visited. For α = 0 the
flat recombination is obtained, in which m j

i is randomly chosen between the corresponding
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genes of its parents. We considered α = 0.5, a choice allowing to balance exploration and
exploitation [15], since the new gene has the same probability to lie inside or outside the
interval defined by its parents.

However, taking α > 0 might bring to an action interval which is not included in [l, u],
where l and u are defined in (2). In order to handle the box constraints, we devised two
variants of the BLX-α strategy. In the former, if Ii �⊂ [l, u], one considers as action interval
the largest feasible interval I S

i ⊂ Ii obtained by symmetrically shrinking Ii , i.e.

I S
i = [gi − ᾱMi , Gi + ᾱMi ],

where ᾱ is the largest value such that I S
i is feasible. This strategy is called SBLX-α. In the

latter, a gene m j
i generated according to (3), that does not belong to [l, u], is replaced by

its projection onto this interval. This strategy is called PBLX-α. We observe that SBLX-α is
more conservative than PBLX-α since it works on a smaller action interval; furthermore, the
closer is a parent gene to one of its bounds, the higher is the probability for the generated
genes to be equal to the parent one.

3.4 Replacement of parents

In order to choose which individuals will survive, two main approaches can be adopted: the
overlapping-generation model and the nonoverlapping-generation model [18]. In the former
case, the parents and the offspring will compete with each other for survival; in the latter, all
parents die at each generation and the offspring compete for survival.

The overlapping-model is more elitist, thus implying a loss of genetic diversity which is
likely to lead to premature convergence to a local maximum. Because of the specific features
of our problem, we decided to use a nonoverlapping-generation model, in which every pair
of parents generates three offspring and the two offspring with better fitness survive. This
simple model is combined with an elitist strategy guaranteeing that a copy of the best indi-
vidual in the current population is forced to be selected into the new one. This individual is
not replaced by its offspring.

3.5 Mutation

The mutation operator is aimed at randomly altering some individuals in the population, in
order to introduce genetic diversity. We use the non-uniform mutation described in [14]. In
this case, a gene mi to be mutated becomes a new gene mnew

i according to the following
formula:

mnew
i =

{
mi + �(k, u − mi ) if r ≥ 0.5,

mi + �(k, mi − l) if r < 0.5,

where r is a random number taken from a uniform distribution in (0, 1) and �(k, y) =
y(1 − r (1−k/NG )2

), with k equal to the number of generations obtained so far and NG to the
maximum number of generations of the GA. This operator allows to explore the feasible
domain uniformly in the first generations, and locally in the later generations.

The number of genes to be mutated depends on a parameter PM called probability of
mutation. For each gene of each individual, a random number r is taken from a uniform
distribution in (0,1) and the gene is mutated if r < PM . To avoid the best individual to be
lost through the generations, we use an elitist strategy as in the replacement of the parents,
i.e. we preserve a copy of the best individual by avoiding mutating it.
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4 Computational experiments

Extensive computational experiments were carried out to evaluate the effectiveness of our
GA in the solution of the DGW problem and its competitiveness with the grid search. Special
attention was devoted to analyzing the effects of different choices of the initial population
and of recombination strategies handling the box constraints, which are the most distinc-
tive features of the algorithm. Further work was devoted to comparing the GA with other,
well-established, global optimization algorithms.

We generated three sets of test problems, in which the detector output consists of strictly
white noise and gravitational signal from three pair of masses, corresponding to three possible
types of configurations of the coalescing binary system [2]:

– m1 = m2 = 1.4M� (two neutron stars),
– m1 = 1.4M� and m2 = 10M� (one neutron star and one black hole),
– m1 = 5M� and m2 = 10M� (two black holes),

where M� denotes the solar mass. For each pair of masses we considered 30 realizations
of noise, thus obtaining a set of 30 detector outputs to be analyzed. The length N of such
outputs is 131,072, while the length M of the signal varies with the masses (51,207 for
m1 = m2 = 1.4, 10,823 for m1 = 1.4 and m2 = 10 and 3,216 for m1 = 5 and m2 = 10).
For all the problems, a SNR equal to 10 was chosen. The lower bound l and the upper bound
u on the masses, defining the feasible domain, were set to 1 and 30, respectively. All the
data were obtained by using the LAL package [10], which is gaining wide acceptance as a
reference tool for gravitational wave data analysis.

We note that the most significant set of test problems is the one corresponding to m1 =
m2 = 1.4, since binary systems of neutron stars are known to exist and, for some of them,
general relativistic effects in the binary orbits have been accurately measured [20]. These
problems are also the most difficult to solve, as shown by the results reported in this section.
Furthermore, problems related to the same type of binary configuration show the same level
of difficulty, therefore we do not consider other values for the pair of masses.

Our GA was implemented in the C language, in double precision, using the Mersenne
twister pseudo-random number generator [21], as implemented in the GNU Scientific Library
(version 1.11). For each set of test problems the GA was run using 30 different seeds for
initializing the above generator. The algorithm was stopped when the maximum number of
generations, NG , was achieved. We note that we did not stop the algorithm as soon as the
detection threshold was exceeded (see step 3 of the matched filter in Sect. 2), since in this
case the computed maximum of the objective function may be very far from the actual one,
thus providing poor information on the signal. On the other hand, the algorithm might not
be able to compute a maximum exceeding the threshold. However, the threshold was used to
evaluate the performance of the algorithm, as explained below. A threshold equal to 8 was
chosen, which is a typical value in the DGW problem [22]. We also verified experimentally
that other stopping criteria, e.g. based on the variation of the masses, may halt the algorithm
prematurely. The GA parameters, i.e. the probabilities of recombination and mutation, the
size of the initial population and the maximum number of generations, were set as follows:
PR = 0.7, PM = 0.05, NP = 100 and NG = 50. These values were selected mainly on the
basis of computational experiments, not reported here for the sake of space; the choice of the
values for PR and PM was suggested also by the literature [23,24].

Our first experiments were aimed at studying the impact of the choice of the initial popu-
lation on the GA behaviour. We compared three different strategies:
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Fig. 4 Initial populations of 100 individuals generated by using the RAND (a), RAND-NSS (b) and RAND-
GRID (c) strategies

Table 1 GA behaviour with different strategies for the selection of the initial population

m1 m2 Init. population fmean fstd success (%) relerr

1.4 1.4 RAND 6.8133 1.6225 20.9 0.322

RAND-NSS 6.9053 1.6852 24.0 0.312

RAND-GRID 9.8058 1.2655 92.0 0.024

1.4 10 RAND 9.6069 1.5763 87.9 0.065

RAND-NSS 9.5351 1.5918 86.0 0.072

RAND-GRID 10.2358 1.0716 99.0 0.004

5 10 RAND 10.2734 1.0383 99.0 0.001

RAND-NSS 10.2767 1.0319 99.3 0.001

RAND-GRID 10.1993 1.0448 98.7 0.008

SBLX-0.5 is used as recombination operator

– random generation of individuals from a uniform distribution in [1, 30]×[1, 30] (RAND);
– NSS with b2 = NP elementary boxes, with a random choice of individuals from a uniform

distribution in each box (RAND-NSS);
– combination of random choice of individuals from the grid corresponding to a minimal

match of 97% and of grid-based NSS with b = 4, as explained in Sect. 3.1 (RAND-GRID).

Initial populations generated with these three strategies are shown in Fig. 4. Table 1 shows
the numerical results obtained by running the GA with the three strategies, using SBLX-0.5
as recombination operator, for each set of test problems. The mean value of the computed
maximum of the objective function F over 900 runs (30 realizations of noise × 30 seeds
for the pseudo-random number generator) and the related standard deviation are reported in
the fmean and fstd columns; the percentage of runs in which the maximum of F exceeds the
selected threshold, and hence a signal detection is stated, is reported in the success column;
finally, the absolute value of the difference between the mean value of the maximum of
F computed by the grid search and that computed by the GA, divided by the first one, is
reported in the relerr column (this also includes the runs where the maximum computed by
the GA does not exceed the threshold). We recall that the reference value for the mean of the
computed maximum of F is the SNR, i.e. 10.

As expected, a choice of the initial population which provides a uniform coverage of
the feasible domain without taking into account the specific characteristics of the objec-
tive function (RAND-NSS) does not produce any significant improvement with respect to
a uniform random choice of the population in the whole feasible domain (RAND). On the
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Table 2 GA behaviour with the RAND-GRID strategy, varying the parameter b in the grid-based NSS, and
with the SBLX-0.5 recombination operator

SBLX-0.5

m1 m2 b fmean fstd success (%) relerr evmean evstd

1.4 1.4 0 9.8617 1.2057 93.7 0.018 4202 1404

4 9.8058 1.2655 92.0 0.024 4206 1454

8 9.6272 1.4666 87.2 0.041 4232 1465

1.4 10 0 10.2529 1.0399 99.4 0.003 3992 1476

4 10.2358 1.0716 99.0 0.004 4046 1448

8 10.1993 1.1088 98.3 0.008 4021 1522

5 10 0 10.1592 1.0421 98.8 0.012 3608 1589

4 10.1993 1.0448 98.7 0.008 3577 1663

8 10.2669 1.0361 98.9 0.002 3638 1615

other hand, a very strong improvement can be observed for m1 = m2 = 1.4 when the
problem-driven approach (RAND-GRID) is adopted; indeed, for this set of test problems,
neglecting the information provided by the grid leads to a mean value of the maximum of
F that is very far from the SNR and exceeds the threshold in at most 24% of the runs. The
problem-driven approach produces also a significant improvement in the case m1 = 1.4 and
m2 = 10, whereas it does not produce any improvement the case m1 = 5 and m2 = 10.
Similar results hold if PBLX-0.5 is used as recombination operator. However, we report that
for m1 = m2 = 1.4 the use of PBLX-0.5 produces higher percentages of success when the
RAND and RAND-NSS strategies are used (59.9% and 57.3%, respectively); this is due to
the fact that the projection of a gene that is out of its bounds onto the interval with endpoints
the corresponding genes of the parents produces more individuals close to (1.4, 1.4). The
previous results show that a selection of the initial population based on the a priori knowledge
of the problem is a key issue for the performance of the GA.

Taking into account the previous considerations, we performed a deeper analysis of the
GA behaviour with the RAND-GRID strategy, varying the value of the parameter b in the
grid-based NSS, and applying the recombination rules SBLX-0.5 and PBLX-0.5 described in
Sect. 3.3. The corresponding results are reported in Table 2 for SBLX-0.5 and in Table 3 for
PBLX-0.5. By looking at Table 2, we see that b = 0 and b = 4 lead to very close results for
all the test sets; their behaviour is satisfactory, as shown by the mean value of the computed
maximum, which, in our problem, can be considered very close to the mean value of the
maximum over the grid (see the relerr column), and by the high percentage of success. We
note that the lower percentage of success for m1 = m2 = 1.4 is also due to the fact that
one of the 30 instances of this class of problems has a maximum value of F lower than the
detection threshold (the maximum computed by the grid search algorithm is 7.02). Therefore,
the success cannot exceed 96.7% in this case. The choice b = 8, in which more than one
third of the population is generated by the grid-based NSS, degrades the GA performance
for m1 = m2 = 1.4, while slightly improves it for m1 = 5 and m2 = 10. The previous
comments apply also to the results in Table 3, concerning PBLX-0.5. However, we see that
SBLX-0.5 leads to slightly greater mean values of the maximum of F ; it generally gives
also greater percentages of success (about 99%) for the problems with larger masses. This
suggests that a more conservative strategy to handle the constraints should be preferred. It is
worth noting that computational experiments with the BLX-0 operator, which never violates
the box constraints, led to poor percentages of success.
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Table 3 GA behaviour with the RAND-GRID strategy, varying the parameter b in the grid-based NSS, and
with the PBLX-0.5 recombination operator

PBLX-0.5

m1 m2 b fmean fstd success (%) relerr evmean evstd

1.4 1.4 0 9.7514 1.0979 93.6 0.029 3865 1568

4 9.7036 1.1397 92.8 0.034 3827 1615

8 9.5714 1.2943 88.4 0.047 3885 1616

1.4 10 0 10.1143 1.1139 96.8 0.016 3654 1660

4 10.0773 1.1449 96.4 0.020 3579 1660

8 10.0442 1.1221 96.4 0.023 3559 1692

5 10 0 10.1344 1.0571 98.0 0.014 3437 1698

4 10.1286 1.0717 97.8 0.015 3480 1682

8 10.2434 1.0449 99.4 0.004 3682 1648

We observe that the mean and the maximum number of objective function evaluations
over all the experiments, in NG generations of the GA, are 5,821 and 5,914, respectively, i.e.
less than 22% of those required by the grid search (27,379). Furthermore, the actual number
of objective function evaluations to achieve the computed optimal solution is generally lower,
as shown by its mean value (evmean) and standard deviation (evstd) reported in Tables 2 and
3. Therefore, the GA approach allows a significant saving of the computational time with
respect to the grid search.

The GA was also compared with three global optimization algorithms: Price’s controlled
random search (CRS) [25], particle swarm pattern search (PSwarm) [26], and DIRECT [27].
CRS and PSwarm are population-based, i.e. they maintain a population of candidate solu-
tions evolving toward an optimal solution. DIRECT generates a sample of points that, as the
number of iterations goes to infinity, form a dense subset of the search space. A descrip-
tion of the previous algorithms is beyond the scope of this paper; for details the reader is
referred to the above references. We only note that CRS is “fully” heuristic, in the sense
that no convergence results are available for it (at least for its original version); PSwarm,
under appropriate assumptions, is globally convergent with probability 1 to first-order critical
points; finally, DIRECT is deterministic, since its so-called “everywhere dense” convergence
property guarantees that the algorithm is able to generate points arbitrarily close to a global
optimum.

CRS was implemented in C, using the same pseudo-random number generator chosen for
our GA. The following stopping criterion was applied: the difference between the maximum
and the minimum value of F in the current population is lower than a specified tolerance,
or the maximum number of objective function evaluations is achieved. In our experiments
the previous tolerance and maximum number were set to 10−4 and 30,000, respectively.
A C implementation of PSwarm was downloaded from http://www.norg.uminho.pt/aivaz/
pswarm/. It combines different stopping criteria, based on various concepts (the norm of the
velocity vector, the mesh size parameter and the clustering of the particles); default values
were used for the related tolerances, as well as for the various parameters of the algorithm (see
[26]). A maximum number of 30,000 objective function evaluations was also imposed, as for
CRS. Finally, a Fortran 90 implementation of DIRECT was provided by G. Liuzzi, S. Lucidi
and V. Piccialli, who developed it as a part of the work described in [28]. A maximum number
of 30,000 function evaluations was used to stop this algorithm too. The parameter ε, used to
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identify the so-called potentially optimal hyperintervals, was set to 10−4 [27]. The possibility
of choosing between an initial population randomly extracted from a uniform distribution
(default) or generated by RAND-GRID was added to CRS and PSwarm.

A further stopping criterion was introduced in the three previous implementations, which
was combined with the other criteria through a logical “or”:

FGA − FMAX < FGA · TOL, (4)

where, for each problem instance in a test set, FGA is the mean value of the maxima of F
computed by the GA (with SBLX-0.5) over the corresponding 30 runs, FMAX is the max-
imum value of F at the current iteration of the algorithm under consideration, and T O L
is a tolerance, set to 10−3 in our experiments. Note that, in CRS and PSwarm, FGA refers
to the GA using the same initial population, while in DIRECT it refers to the GA with the
RAND-GRID strategy, using the best value of b for each test set (b = 8 for m1 = 5 and
m2 = 10, b = 0 for the remaining problems). This criterion was introduced to compare
the three solvers with the GA in terms of the number of objective function evaluations for
computing a solution “close” to the GA solution.

The previous optimization solvers were run on all the test problems described at the
beginning of this section. An initial population of 100 individuals was chosen for CRS
and PSwarm, using both the default and the RAND-GRID strategy. Like the GA, the two
non-deterministic algorithms were run 30 times for each problem instance. For the sake of
space, we report in detail only the results concerning the most significant test set (m1 =
m2 = 1.4) and comment more briefly on the other results. CRS and PSwarm generally per-
form better with RAND-GRID, therefore we discuss the results obtained with this strategy.

CRS and DIRECT are more efficient than the GA on the test set corresponding to m1 = 5
and m2 = 10, since they satisfy criterion (4) on 100% of the problems, and hence achieve
100% of success, with a number of objective function evaluations smaller than the GA.
PSwarm is less efficient, since it gets at most 97.3% of success, with (4) satisfied in 40.7%
of the cases (actually, this is the only case where the RAND strategy produces better results
than the RAND-GRID one, showing 97.9% of success with (4) satisfied in 64.4% of the
cases). For m1 = 1.4 and m2 = 10, CRS and DIRECT do not outperform the GA. CRS
achieves a high percentage of success, i.e. 98–99%, with (4) satisfied in more than 91% of
the cases; the number of objective function evaluations has a mean value ranging from 3,312
to 3,926 (depending on the value of b in the RAND-GRID strategy), but its largest value var-
ies between 15,332 and 16,359, resulting much greater than for the GA. DIRECT gets 100%
of success, with 90% of runs satisfying (4), but the mean value of the number of objective
function evaluations is 12,438; furthermore the algorithm stops in 10% of the cases because
the maximum number of objective function evaluations has been reached. As for m1 = 5
and m2 = 10, PSwarm is less effective than the GA, since it achieves a smaller percentage
of success, i.e. at most 95.9%, with (4) satisfied in about 20% of the cases. The performance
of CRS, PSwarm and DIRECT strongly deteriorates for m1 = m2 = 1.4, as shown by
the results reported in Table 4 (the stop column reports the percentage of runs where the
algorithm stops by satisfying (4)). The percentage of success of the three algorithms is very
low (at most 43.4% with PSwarm), as well as the percentage of cases where (4) is satisfied
(at most 27% with CRS), showing that the three algorithms are not able to compute solutions
as good as the GA ones. Actually, the mean of the computed optimal values is smaller than 8,
i.e. it does not reach the threshold used to measure the success of the algorithms. The worst
results are obtained with DIRECT, which achieves only 23.3% of success and a mean of the
optimal values equal to 7.2031. On the other hand, we verified that DIRECT, according to
its convergence properties, is able to get solutions comparable to the GA ones, if a number
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Table 4 Performance of CRS, PSwarm and DIRECT for m1 = m2 = 1.4

m1 = m2 = 1.4

Algorithm b fmean fstd success (%) stop (%) evmean evstd

CRS 0 7.7629 1.9030 40.3 24.1 5478 3828

4 7.5542 1.8758 35.3 22.1 5839 3888

8 7.4862 1.9000 31.6 27.0 5977 3912

PSwarm 0 7.8202 2.0224 43.2 21.6 1783 3948

4 7.8268 2.0145 43.4 22.8 2258 4660

8 7.7596 2.0119 40.9 23.9 3039 5838

DIRECT – 7.2031 1.8919 23.3 10.0 28029 6562

The RAND-GRID strategy, with different values of the parameter b, is used by CRS and PSwarm

of objective function evaluations much larger than 30,000 is allowed. Of course, in this case
DIRECT is far from being competitive with the GA and the grid search.

In conclusion, we developed a GA tailored to the DGW optimization problem, which
is able to compute solutions comparable to those obtained by the grid search, but allows
a strong reduction of the computational cost, thus providing a more powerful tool in the
analysis of the noisy outputs of interferometers. The GA resulted also much more efficient
than the CRS, PSwarm and DIRECT algorithms on the most significant and difficult set of
problem instances used in the experiments. Future work will be devoted to improving the GA
by introducing additional a priori information on the problem, and to exploring the effects of
using multiple populations. We are also interested in comparing the GA with further global
optimization algorithms [29,30].
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